NEES @ UC San Diego

Upcoming Projects

Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings: Phase I Test

With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). However, the majority of existing tall CLT buildings are located in non-seismic or low-seismic regions of the world. There is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. The Vision of this project is to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.

The Phase I tests of this project include a biaxial loading test at NHERI@ Lehigh and a two-story full scale building test at NHERI@UCSD. The two-story shake table test includes a wood building prototype with open floorplan, resilient rocking wall system, and high aspect ratio CLT floor diaphragms.

Learn More
Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings: Phase I TestFull Size

NEESR: Enhancement of Seismic Performance and Design of Partially-Grouted Reinforced Masonry Buildings

Reinforced masonry constitutes about 10% of all low-rise buildings in the US. Many of them are commercial, industrial, and school buildings. While most of the reinforced masonry structures constructed in the West Coast are fully grouted, almost all reinforced masonry construction in the rest of the country, including regions of high seismic risk, has partial grouting to make it economically competitive. However, the seismic performance of partially grouted reinforced masonry wall systems has not been sufficiently studied and is not well understood due to the complexity of their behavior, which can be attributed to the heterogeneity and anisotropy introduced by masonry blocks, block cavities, mortar joints, and grouted cells. This project is to enhance the understanding of the behavior of partially grouted masonry structures at the system as well as component level, and develop and validate economically competitive, improved, design details and retrofit methods to enhance their seismic performance...

Learn More
NEESR: Enhancement of Seismic Performance and Design of Partially-Grouted Reinforced Masonry BuildingsFull Size NEESR: Enhancement of Seismic Performance and Design of Partially-Grouted Reinforced Masonry BuildingsFull Size NEESR: Enhancement of Seismic Performance and Design of Partially-Grouted Reinforced Masonry BuildingsFull Size

NEHRPNSFNEEScommNEESIAS Accredited

The Large High-Performance Outdoor Shake Table is supported in part by the George E. Brown, Jr. Network for Engineering Simulation (NEES) program of the National Science Foundation under Award Number CMMI-0927178.

web counter | ↑ Top | Valid XHTML 1.0 Transitional | Valid CSS 2.1 | Last updated on Tuesday, 07-May-2013 10:21:20 PDT.