NEES @ UC San Diego

Current Projects

Collaborative Research: Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Buildings, Phase I: In-line Wall Component Tests

The need for low cost, multi-hazard resilient buildings constructed of sustainable, low-carbon footprint materials is urgent. Mid-rise buildings framed from thin-walled, cold-formed steel (CFS) have the ability to support this urgent need. The potential benefits of CFS-framed structures include low installation and maintenance costs, high durability and ductility, lightweight framing, and use of a non-combustible material. By using framing schemes with closely-spaced vertical members repetitively placed in the walls, CFS buildings develop lateral resistance through sheet, or sheathing attached to these vertical members. The response of these building systems under earthquake loads and, in particular, the contribution of portions of the building system not specifically designated by the design engineers to resist earthquake loads are not well understood. In this project, a series of experiments and complementary numerical modeling to characterize the relationship between the designated lateral force resisting system, i.e., the shear walls, and the complete CFS building system response, including the impact of the gravity walls, finish materials, and interior partitions, during seismic events./p> Learn More

Collaborative Research: Seismic Resiliency of Repetitively Framed Mid-Rise Cold-Formed Steel Buildings, Phase I: In-line Wall Component TestsFull Size

NEHRPNSF NHERI Logo IAS Accredited

The Large High-Performance Outdoor Shake Table is supported in part by the George E. Brown, Jr. Network for Engineering Simulation (NEES) program of the National Science Foundation under Award Number CMMI-0927178.

web counter | ↑ Top | Valid XHTML 1.0 Transitional | Valid CSS 2.1 | Last updated on Thursday, 19-Apr-2018 09:43:43 PDT.