NEES @ UC San Diego

Current Projects

Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings: Phase I Test

With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). However, the majority of existing tall CLT buildings are located in non-seismic or low-seismic regions of the world. There is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. The Vision of this project is to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.

The Phase I tests of this project include a biaxial loading test at NHERI@ Lehigh and a two-story full scale building test at NHERI@UCSD. The two-story shake table test includes a wood building prototype with open floorplan, resilient rocking wall system, and high aspect ratio CLT floor diaphragms.

Learn More
Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings: Phase I TestFull Size

NEHRPNSFNEEScommNEESIAS Accredited

The Large High-Performance Outdoor Shake Table is supported in part by the George E. Brown, Jr. Network for Engineering Simulation (NEES) program of the National Science Foundation under Award Number CMMI-0927178.

web counter | ↑ Top | Valid XHTML 1.0 Transitional | Valid CSS 2.1 | Last updated on Tuesday, 07-May-2013 10:21:20 PDT.